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Introduction 

 

 For background information on the yellowtail flounder tagging project and 

database see WP3E. 

 

 A variety of techniques for estimating the survival of closed or open populations 

exist (e.g., Ricker 1975; Seber 2002), and mark-recapture studies have proven to be 

among the better methods (Brownie et al. 1985; Lebrenton et al. 1992; Quinn and Deriso 

1999).  With the advancement of computer technology and programming capabilities, a 

wide range of computer intensive methods have become widely available.  One such 

program is MARK (White and Burnham 1999; Cooch and White 2004), which provides a 

means for estimating parameters from tagged animals when they are recaptured at a later 

date.  The basic input data for the program is the reencounter history for each animal, and 

it uses these data to compute model parameters via numerical maximum likelihood 

methods (Cooch and White 2004).  The mark-recapture data can be entered into the 

program via two methods, an encounter history file and a ‘classic’ recovery matrix, and 

numerous customized models can be fit to the data to estimate survival and recovery 

rates.  
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 The purpose of this preliminary analysis was to examine the yellowtail mark-

recapture data to see if reliable estimates of survival from the data are possible. The 

analyses, results and estimates are from exploratory models, and future work will be 

aimed at refining these models to better represent the nature of the populations and the 

fisheries involved.        

 

 

Methods 

 

 Traditional Brownie recovery models were fit to yellowtail tag-recapture data 

from the yellowtail flounder tagging study carried out by the NMFS NEFSC.  A 

preliminary examination of basic time-variant and invariant models was carried out using 

program MARK (White and Burnham 1999).  Program MARK allows the user to fit a 

series time-variant tagging models to estimate either time-dependent or constant survival 

and recovery rates.  There are four major assumptions underlying the Brownie models 

examined:  

 

 1. The probabilities of recapture and survival are the same for all marked animals;   

 2.  The tagging and recapture are both instantaneous processes relative to the 

 occasion;  

 3. That tagged cohorts are thoroughly mixed;   

 4.  There is no tag loss and marks are not missed when recaptures occur (Brownie 

 et al. 1985).  

 

 The observed yellowtail recovery (r) data were entered into the program in a 

triangular recovery matrix format (Brownie et al. 1985; White and Burnham 1999) with I 

= 51 months of tagging data and J = 50 months of recovery data: 
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Where rij is the recovery in year j of animals tagged in year i.  To apply the models to the 

observed data MARK constructs matrices of expected values based on the parameters to 

be estimated.  For example, for a tagging study with I years of tagging data and J years of 

recovery data the fully time dependent model is represented by the matrix (Brownie et al. 

1985):  
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where Ni is the number of individuals tagged in year i, fi is the tag recovery rate in year i, 

and Si is the survival rate in year i.  Each row in the expected matrix is represented with a 

multinomial likelihood and the product of all row likelihoods is maximized to generate 

parameter estimates.   

 

 In this study, dead recovery models were used with two different 

parameterizations.  A classic “Brownie’s parameterization” was used to fit the models 

(Brownie et al. 1985), and the reduced parameterization (Seber 1970; Andersen et al. 

1985) was used to run model simulations. Brownie’s parameterization estimates survival 

(S) and recovery rate (f), where f is a product of the probability that the animal is killed 

(K), retrieved (α), and reported (λ) (Figure 4.2).  The reduced parameter model estimates 

survival (S) and recovery rate (r) and can be linked algebraically to the fully 

parameterized model with the equation:    

 

fi = ri(1 – Si ) 
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(Brownie et al. 1985; White and Burnham 1999; Cooch and White 2004).  In this reduced 

parameterization ri represents the recovery rate in year i, and differs from Brownie’s 

parameterization in that it does not consider the source of mortality for recoveries.   

 The entire tag-recapture dataset was examined with four models exhibiting both 

time-dependent and constant survival as well as time-dependent and constant recovery 

rate.  Three different time period specifications for the parameters were examined 

separately: Annual, seasonal, and monthly.   Akaike’s information criterion (AIC) was 

used to rank and select the model that achieved an optimal balance between the precision 

of the model and the overall fit, where precision decreases as the number of parameters in 

the model increases.  Fit was judged with the model likelihood (L): 

 

AIC = - 2 ln(L) + 2P 

 

where P is equal to the number of parameters.  Program MARK modifies this equation to 

account for differences in effective sample size (N) and lack of fit (c): 
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 This equation is known as the quasi likelihood adjusted AIC (Cooch and White 

2004).  A parametric bootstrap and median ĉ  goodness of fit (GOF) test were carried out 

to determine how well the general model (fully time-dependent) fit the data.  Each of 

these simulations used the data to generate a variance inflation factor ( ĉ ) for the reduced 

parameter general model.  If the model fit the data perfectly a ĉ value of 1.0 would be 

generated.  Deviations of ĉ  above or below 1.0 indicate over or under-dispersion, 

respectively, and a ĉ  value >3.0 often indicates a lack of fit for the model (Lebrenton et 

al. 1992; Cooch and White 2004).   These GOF tests are available within the framework 

of MARK and an average value of ĉ  from the two methods was used to adjust the QAICc 

of the four models.   
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 To quantify the differences in support between models, an index using normalized 

Akaike weights (w) was also calculated for each model (i) (Buckland et al. 1997): 
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Results and Discussion 

 

 Both the annual and seasonal models that were fit to the data did not return 

acceptable diagnostics for model fit and will not be addressed further.  The results from 

the 4 monthly models are outlined below.   

 The simulations to test the goodness of fit of the general model suggest a 

borderline model fit.  The variance inflation factor (c-hat) estimates from the bootstrap 

goodness of fit (3.90) and the median c-hat approach (3.02) indicate overdispersion in the 

model (Figure 1 a and b).  The mean estimate from the two methods was 3.46, which is 

above the designated value of 3.0 for a good model fit.  In addition, the survival 

parameter estimates for the general model vary greatly, approaching both boundaries of 0 

and 1.0 which suggests sparseness in areas of the dataset.  The residual plot from the 

general model does not exhibit any noticeable patterns (Figure 2).  However, a 

comprehensive examination of the residual matrix still needs to be carried out.  It is likely 

that non-mixing is taking place for newly released individuals which could be affecting 

the model fit and resulting parameter estimates.  

   It is apparent that before estimates of either parameter can be examined further a 

reworking of the data and general model is necessary. For a preliminary model we have 

achieved a fairly good fit and it is believed that once the models and the data are refined 

the overall fit and the resulting parameter estimates will be greatly improved.   
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Table 1.  Preliminary model results for 4 basic time variant and time invariant models. 

Model QAICc 
Delta 
QAICc 

QAICc 
Weights 

Model 
Likelihood 

Num. 
Par QDeviance 

{S(t) f(t)} 12046.07 0.00 1 1 75 543.30
{S(.) f(t)} 12118.21 72.14 0 0 52 661.57
{S(t) f(.)} 12287.10 241.03 0 0 51 832.46
{S(.) f(.)} 12579.23 533.16 0 0 2 1222.71   
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Figure 1.  Results from model simulations used to estimate ĉ  for model adjustments. a. Simulated deviances 
from 1000 simulations of the general (time variant) model. The estimate of ĉ is calculated by dividing the 
observed general model deviance (1879.8) by the mean of the simulated deviances (481.2).  b. Simulated 
deviance ĉ  (model deviance/degrees of freedom) for a range of simulated c values.  The estimate of ĉ , 
determined through logistic regression, is the point where 50% of the simulated values fall above and 50% 
fall below the observed deviance ĉ  for the general model (3.54).    
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Figure 2. Residuals from the time general model with time-variant parameters. * Some large outlying 

residuals not shown.  

 

 

Future direction 

 

-Reparamaterize the Brownie models using information on tag reporting, tag shedding, 

and tag induced mortality. 

 

-Utilize ancillary information (e.g., fishing effort) to better parameterize recovery rate 

and reduced the number of parameter estimates (eg. can recovery rate be reduced to a 

monthly cycle so that only 12 estimates of f are generated?).  
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